Examples include the physical Internet, the world wide web, online social networks, phone networks, and biological networks. In addition to their massive sizes, these graphs are dynamic, noisy, and sometimes transient. They also conform to all five Vs (Volume, Velocity, Variety, Value and Veracity) that define Big Data. However, many graph-related problems are computationally difficult, and thus big graph data brings unique challenges, as well as numerous opportunities for researchers, to solve various problems that are significant to our communities.
Big graph problems are currently solved using several complementary paradigms. The most popular approach is perhaps by exploiting parallelism, through specialized algorithms for supercomputers, shared-memory multicore and manycore systems, and heterogeneous CPU-GPU systems. However, since real-world graphs are sparse and highly irregular, there are very few parallel implementations that can actually deliver high performance. The major challenges to scaling and efficiency include irregular data dependencies, poor locality, and high synchronization costs of current approaches. In addition to parallelism, researchers are developing approximation algorithms that use sampling for compressing and summarizing graph data. Streaming algorithms are also being considered for scenarios where the rate of updates is too fast to process the entire graph in a single pass. Further, out-of-core algorithms are necessary for massive graphs that do not fit in the main memory of a typical system. Researchers can use graph-based solutions for solving problems from many diverse disciplines, including routing and transportation, social networks, bioinformatics, computational science, health care, security and intelligence analysis.
This workshop aims to bring together researchers from different paradigms solving big graph problems under a unified platform for sharing their work and exchanging ideas. We are soliciting novel and original research contributions related to big graph data management, analysis, and mining (algorithms, software systems, applications, best practices, performance). Significant work-in-progress papers are also encouraged.
Papers can be from any of the following areas, including but not limited to:
Parallel algorithms for big graph analysis on HPC systems
Heterogeneous CPU-GPU solutions to solve big graph problems
Extreme-scale computing for large graph, tensor, and network problems
Sampling and summarization of large graphs
Graph algorithms for large-scale scientific computing problems
Graph clustering, partitioning, and classification methods
Scalable graph topology measurement: diameter approximation, eigenvalues, triangle and graphlet counting
Parallel algorithms for computing graph kernels
Inference on large graph data
Graph evolution and dynamic graph models
Graph streams
Graph databases, novel querying and indexing strategies for RDF data
Novel applications of big graph problems in bioinformatics, health care, security, and social networks
New software systems and runtime systems for big graph data mining
12月05日
2016
12月08日
2016
注册截止日期
留言