征稿已开启

查看我的稿件

注册已开启

查看我的门票

已截止
活动简介

The development of high energy density electrochemical energy storage is dependent upon the identification of new materials and new mechanisms. To date, the most successful electrochemical energy storage has been limited to intercalation of monovalent cations (protons, lithium) and one-electron (or fewer) redox reactions. The discovery of materials that exhibit energy storage via intercalation of multivalent ions such as magnesium or that allow for more than one-electron redox would dramatically increase energy density as well as expand the spectrum of electrochemical energy storage materials chemistry. Mechanistic understanding of multivalent processes is needed, in both non-aqueous and aqueous battery chemistries. Computational studies, in situ characterization techniques, well-characterized model systems, and new materials discoveries (both organic and inorganic) are required. Of particular interest are the roles of interfacial mechanisms, including ion solvation and charge-transfer processes, on reversibility and kinetics of multivalent charge storage in materials.

This symposium will highlight the latest advances in understanding multivalent electrochemical reactions, a topic that encompasses computational and experimental materials science, chemistry, physics, and engineering. The goal of this symposium is to provide a forum for the emerging mechanistic understanding of multivalent energy storage in different materials systems and the development of future energy storage chemistries.

征稿信息

重要日期

2016-10-13
摘要截稿日期

征稿范围

  • Materials for multivalent intercalation, including organic materials

  • Energy storage with multivalent cations

  • Energy storage via anion redox

  • Novel electrolytes for multivalent energy storage

  • Electrode/electrolyte interfaces in multivalent energy storage

  • Computational studies of multivalent energy storage

  • Multivalent metallic anodes (Mg, Al, Ca)

留言
验证码 看不清楚,更换一张
全部留言
重要日期
  • 会议日期

    04月17日

    2017

    04月21日

    2017

  • 10月13日 2016

    摘要截稿日期

  • 04月21日 2017

    注册截止日期

联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询