征稿已开启

查看我的稿件

注册已开启

查看我的门票

已截止
活动简介

Some of the most exciting and challenging mathematics is happening at the interface of three areas: Algebraic Geometry, Automorphic Forms and Number Theory. The hub of this is the Langlands Program. This is a vast complex of conjectures that will keep mathematicians busy for decades. Theoretical progress has been made recently, for instance the solution to Serre’s conjecture, the proof of the Fundamental Lemma, and the proof of the Sato-Tate conjecture. These conjectures predict often very concrete information about, for example, solutions to polynomial equations with integer coefficients. In turn, these conjectures suggest interesting avenues of research within related domains, and new territory to explore. In mathematics, often this exploration takes the form of experimentation with examples. In fact the examples are often interesting in their own right. A good instance of this is the theory of Calabi-Yau varieties. These varieties have played an important role in physics, but also the study of their arithmetic has been also fruitful. The zeta-functions of these varieties have even been studied by physicists (see, e.g., [1]) We propose to have a workshop devoted to topics at the interface of these three areas, with an emphasis on computation.

征稿信息
留言
验证码 看不清楚,更换一张
全部留言
重要日期
  • 会议日期

    08月31日

    2015

    09月04日

    2015

  • 09月04日 2015

    注册截止日期

主办单位
三亚国际数学论坛
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询