A Self-supervised Learning Method for Predicting Microsatellite Instability Based on Pathological Images
编号:72 访问权限:仅限参会人 更新:2022-07-15 00:12:24 浏览:635次 张贴报告

报告开始:2022年07月23日 09:20(Asia/Shanghai)

报告时间:20min

所在会场:[E] 张贴报告 [E] 张贴报告

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Microsatellite instability (MSI) is a variation caused by the damage of deoxyribonucleic acid (DNA) mismatch repair. The MSI status can be used as an important biomarker to evaluate whether cancer patients can adapt to immunotherapy. Previously, the gold-standard method for MSI determination was a PCR test or immunohistochemical detection, but in recent years, research has proved that deep learning can detect MSI in tumor samples on routine histology slides faster and more cheaply than molecular assays. In this study, we used a number of self-supervised methods including ResNest, Transformer and other deep network structures on the Cancer Genome Atlas (TCGA) pathological image datasets to detect MSI status. The test results show that all methods received an area under the curve (AUC) of over 0.90. These results go beyond the performance of a single classical network structure on the datasets, which not only proves the superiority of the self-supervision training method in such research, but also that the relevant experimental performance of the transformer structure is more accurate than weight random initialization and the ImageNet migration model. Overall, our proposed self-supervised methods make up for the prior knowledge gap between natural image and medical image pre-training knowledge.
关键词
Microsatellite instability;Self-supervised;Deep learning;Pathological image
报告人
阮茹芸
学生 深圳技术大学

稿件作者
阮茹芸 深圳技术大学
黄炳顶 深圳技术大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    07月22日

    2022

    07月25日

    2022

  • 06月15日 2022

    初稿截稿日期

  • 07月05日 2022

    提前注册日期

  • 08月01日 2022

    注册截止日期

主办单位
中国生物工程学会计算生物学与生物信息学专业委员会
中山大学中山眼科中心
中山大学医学院
南方医科大学
承办单位
中山大学中山眼科中心
中山大学医学院
南方医科大学
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询