475 / 2019-02-27 22:51:52
A Digital Neuromorphic Hardware for Spiking Neural Network
digital scalable hardware,SNNs,configurability
终稿
Yuanning Fan / Peking University
Chenglong Zou / Peking University
Kefei Liu / Peking University
Yisong Kuang / Peking University
Xiaoxin Cui / Peking University
The neuromorphic hardware with a non-von Neumann architecture has the advantage of highly-parallel and low-power. In this paper, a digital neuromorphic core with 1024 neurons, 1024 axons and a 1024×1024 synaptic crossbar is designed, and the scalable network could be implemented based on the 2D mesh network on chip (NOC) architecture. The transformed deep spiking neural network (SNN) models can be mapped to our hardware directly, and show good application results. At the case of the full firing rate, the average power of a spike is 2.76E-08J, and for some image recognition tasks, the hardware power consumption is at the milliwatt level.
重要日期
  • 会议日期

    06月12日

    2019

    06月14日

    2019

  • 06月12日 2019

    初稿截稿日期

  • 06月14日 2019

    注册截止日期

承办单位
Xi'an University of Technology
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询