321 / 2017-02-27 13:22:55
Adaptive Super-Resolution Algorithm Based on MCA Decomposition
12949,12947,5675,12950,sparse representation
全文录用
Liu chang / Guangdong University of Technology
According to the SCSR (sparse coding sparse representation), algorithm based on general dictionary can not characterize the various structural types of image. Global sparse reconstruction introduced these 2 shortcomings of redundant, proposed super-resolution algorithm adaptive decomposition based on MCA (morphological component analysis). This algorithm, first of all, using sparse K-SVD method to obtain the low resolution Dictionary of training for low resolution image reconstruction and down sampling as dictionary training samples, improved the correlation between low resolution images and reconstructed the dictionary. Secondly, in the reconstruction phase, the MCA method is used to extract the texture components of the image to reconstruct the sparse image. Experimental results show that compared with other advanced algorithms, the proposed algorithm is able to recover the image edge details better and the reconstructed quality is better.
重要日期
  • 会议日期

    03月22日

    2017

    03月24日

    2017

  • 02月15日 2017

    初稿截稿日期

  • 02月20日 2017

    初稿录用通知日期

  • 02月22日 2017

    终稿截稿日期

  • 03月24日 2017

    注册截止日期

移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询