119 / 2016-06-18 18:44:30
An Unsupervised Feature Learning Approach to Feature Description
Image Registration,feature Description,Machine Learning,Unsupervised Feature Learning
全文待审
来恩 周 / 空军工程大学
晓丹 王 / 空军工程大学
琪 贾 / 空军工程大学
玉玺 张 / 北京通信总站
In this paper, we present an Unsupervised Feature Learning approach to Feature Description (UFL-FD), which is a 2D-feature description algorithm in feature space. Previous approaches mainly pay attention to multiscale space building such as Gaussian scale space (SIFT and SURF) and nonlinear scale space (KAZE).However, the building of those spaces is time-consuming and computation-expensive. In contrast, we describe the 2D-features in a feature space that is built by the unsupervised feature learning algorithm. In this way, the feature space is pre-built automatically form image itself to ensure the descriptor with accuracy and distinctiveness.Furthermore, in order to get objective appraisal of the UFL-FD algorithm, we present an extensive evaluation on benchmark datasets, which turns out that UFL-FD algorithm outperforms the SIFT, SURF and KAZE feature description algorithm in both accuracy and computation expense, yielding the algorithm that is of high quality.
重要日期
  • 会议日期

    10月03日

    2016

    10月05日

    2016

  • 07月05日 2016

    初稿截稿日期

  • 07月20日 2016

    终稿截稿日期

  • 10月05日 2016

    注册截止日期

联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询