181 / 2015-11-30 21:17:58
An Improved Faulting Detection Algorithm for Subway Tunnel Segment
faulting, deep learning, depth image, classification and recognition, convolution operation
终稿
Zhengzhe Yang / Shanghai University
Xinwen Gao / Shanghai University
Haibing Xia / Shanghai Tunnel Engineering Rail Transit Design and Research Institute
Novel security detection technology are needed to meet the growing demand of subway operation. In this paper, an improved faulting detection algorithm for subway tunnel segment is proposed. A combined denoising technique is used to convert the depth image of faulting acquired by Kinect into binary image of the height difference which can be processed by digital image. The obvious advantage of this method is that it can avoid the interference of environmental light and improve the detection speed. In addition, we focus on how to classify and identify different types of faulting line based on the idea of deep learning algorithm. And a fast CNN (convolution neural network) has been built to classify and identify faulting line. Finally, it shows that the proposed algorithm is effective through the experimental data.
重要日期
  • 会议日期

    03月23日

    2016

    03月25日

    2016

  • 11月30日 2015

    提前注册日期

  • 12月30日 2015

    初稿截稿日期

  • 01月30日 2016

    初稿录用通知日期

  • 02月05日 2016

    终稿截稿日期

  • 03月25日 2016

    注册截止日期

主办单位
IEEE Madras Section
SSN College of Engineering - SSN Trust
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询