142 / 2015-10-27 19:01:40
Euler 2D-PCA for SAR Target recognition
Euler-Principal Component Analysis, Classification, Synthetic Aperture Radar, Target Recognition
全文录用
苏 刘 / 南京航空航天大学
Euler-Principal Component Analysis (e-PCA) has been recently proposed and successfully applied to the classification frame works. By utilizing the robust dissimilarity measure e-PCA demonstrates better performance than standard PCA while dealing with nonlinear component analysis and suppressing outliers. In this letter, we define a two-Dimensional Euler-Principal Component Analysis (e-2DPCA) framework for SAR image processing. e-2DPCA is based on 2D image matrixes rather than 1D vector which could understand two dimensional (2D) images better and get rid of high dimensional data processing. Furthermore, we applied this algorithm to SAR target recognition. Finally, experiments on MSTAR database perform the usefulness of our method in robust classification towards different situation.
重要日期
  • 会议日期

    03月23日

    2016

    03月25日

    2016

  • 11月30日 2015

    提前注册日期

  • 12月30日 2015

    初稿截稿日期

  • 01月30日 2016

    初稿录用通知日期

  • 02月05日 2016

    终稿截稿日期

  • 03月25日 2016

    注册截止日期

主办单位
IEEE Madras Section
SSN College of Engineering - SSN Trust
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询