61 / 2015-11-21 14:12:55
A long-term tracking model based on tracking failure detection and Weighted Random Forest
8430,tracking,multi-scale,weighted,failure
全文录用
储 珺 / 江西省 南昌市 南昌航空大学 软件学院 计算机视觉研究所
朱 陶 / 江西省 南昌市 南昌航空大学 软件学院 计算机视觉研究所
缪 君 / 江西省 南昌市 南昌航空大学 软件学院 计算机视觉研究所
Compared to traditional visual tracking, long-term tracking appears to be more challenging since the target is likely to suffer more severe deformation, occlusion, scale change or move out of view scenarios. It is challenging to develop a robust and efficient target model. In this paper, we propose a robust model for long-term tracking in complex scenes. In order to achieve this goal, firstly, we extract multi-scale feature based on the illumination invariant color space to solve scale and illumination change of the target. For the purpose of reducing time consumption caused by the multi-scale feature, we adopt a random measurement matrix to project the high-dimensional multi-scale features onto a low-dimensional subspace. Secondly, we introduce a tracking Failure Detection Strategy(FDS) to decide whether the tracking is a failure which cause by occlusion, illumination change and situations when the target moves out of camera view. Finally, we proposed a Weighted Random Forest(WRF) classifier to retrieve the target position after the tracking failure situation, and the classifier is updated online, so that the performance of the model improves over time. Our proposed model performs favorably in complex scenes against conventional models in terms of robustness and time consumption.
重要日期
  • 会议日期

    05月21日

    2016

    05月22日

    2016

  • 10月30日 2015

    提前注册日期

  • 03月21日 2016

    初稿截稿日期

  • 04月01日 2016

    初稿录用通知日期

  • 04月10日 2016

    终稿截稿日期

  • 05月22日 2016

    注册截止日期

主办单位
亚利桑那州立大学
查尔斯特大学
重庆环球联合科学技术研究院
韦洛尔理工大学
阿尔托大学
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询