44 / 2015-10-20 17:12:40
Resting State Brain Network Modeling Based On Functional Magnetic Resonance Imaging
Complex network, Partial least squares, Pearson correlation, Functional magnetic resonance imaging
全文录用
柯铭 / 兰州理工大学
质婧 李 / 兰州理工大学
Abstract: In this paper, the functional magnetic resonance imaging (fMRI) technique and complex network method were used to study the brain functional network of normal subjects. We used the partial least squares (PLS) regression modeling method to construct the normal human brain function network. The global statistical properties of the brain network revealed the brain functional network had small-world effect. Through the evaluation of centrality indices, the gyri callosus, the supramarginal gyrus,gyri frontalis superior and the gyrus angularis were the key areas of the brain functional network in resting state. The result showed that compared with the Pearson correlation analysis method, the PLS algorithm was better to construct the brain network model. It is not only expressed in the brain network threshold is generally high, the "small world" attribute is more obvious, but also the key brain regions that were inferred are more accurate and more consistent with physiological results.
重要日期
  • 会议日期

    12月18日

    2015

    12月20日

    2015

  • 10月20日 2015

    初稿截稿日期

  • 10月20日 2015

    提前注册日期

  • 11月09日 2015

    终稿截稿日期

  • 12月20日 2015

    注册截止日期

主办单位
重庆环球联合科学技术研究院
联系方式
  • Miss Chris Chen
  • 86-********
  • +86*********
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询