251 / 1971-01-01 00:00:00
A Mixed Numerical And Categorical Data Clustering Method Combining Genetic Algorithm And Partition Similarity
5642
终稿
Gang Shen / Beijing Jiaotong University
Xiangqian Li / Beijing Jiaotong University
In real world, data objects described by both numerical and categorical attributes encountered commonly. K-prototype (KP) is one of the most effective algorithms for clustering this kind of data. However, it highly depends on the initial value selection and converges to local optimum easily. In this paper, a Genetic Algorithm based K-prototype method (GAKP) is introduced, in which KP is applied for local searching under the framework of Genetic Algorithm. And a new partition similarity based fitness function is employed. Experiments on benchmark datasets show that the proposed method can get much better results and is more robust than that of traditional clustering algorithms.
重要日期
  • 会议日期

    01月22日

    2015

    02月23日

    2015

  • 12月20日 2014

    初稿截稿日期

  • 12月20日 2014

    提前注册日期

  • 12月31日 2014

    终稿截稿日期

  • 02月23日 2015

    注册截止日期

  • 04月20日 2015

    摘要截稿日期

联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询