223 / 1971-01-01 00:00:00
A Topic Model Based Approach For Detecting Duplicate Bug Reports
5585,5586,5587,5588
终稿
Jie Zou / Chongqing university
Ling Xu / Chongqing university
Mengning Yang / Chongqing university
Meng Yan / Chongqing university
Dan Yang / Chongqing university
Xiaohong Zhang / Chongqing university
The traditional way of duplicate bug reports detection is usually based on vector space model. However, the experimental result is rarely satisfying since this method cannot distinguish semantic correlation among natural languages which are used to describe bug information. Topic model, as a method to model underlying topics of texts, can solve the problem of document similarity calculation methods used in the information retrieving, find the semantic topics among the texts through massive training data, and obtain semantic relatedness among documents. Therefore, this paper presents a new detection method based on topic model. Through selecting bug reports with execution information and combing with classified information of bugs, not only does this new method overcome the problem of high dimension, sparse data and loud noise, but also avoid the problem of synonymy and ambiguity in the natural languages. Comparing to the traditional SVM method, the recall rate and precision rate got from the final experiment by using topic model have obviously increased, which indicates the effectiveness of this new method.
重要日期
  • 会议日期

    01月22日

    2015

    02月23日

    2015

  • 12月20日 2014

    初稿截稿日期

  • 12月20日 2014

    提前注册日期

  • 12月31日 2014

    终稿截稿日期

  • 02月23日 2015

    注册截止日期

  • 04月20日 2015

    摘要截稿日期

联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询