221 / 1971-01-01 00:00:00
Short-term Specific Audio Detection
5567
终稿
宇飞 黄 / 中国科学院声学研究所
若华 周 / 中科院声学研究所
永红 颜 / 中科院声学研究所
Abstract—There are several difficulties in short-term specific audio detection: firstly, the input has less information and it is very intractable to extract suitable feature for representing the signal because of the short duration of the audio. Secondly, a problem of the shortage of training data occurs if directly using the statistic model to process the short-term specific audio. Thirdly, the difficulty of detection increases rapidly when the background noise is relatively large and complex. In this paper, an algorithm based on universal background model-Gaussian mixture model (UBM-GMM) for short-term specific audio detection is proposed, which not only overcomes the defects of lack of data but also in a certain extent can suppress the noise. In this paper, experiments in which there are three kinds of specific audio with different signal-to-noise rate (SNR) are done, the results show that the algorithm can detect the short-term specific audio well in different SNR.
重要日期
  • 会议日期

    01月22日

    2015

    02月23日

    2015

  • 12月20日 2014

    初稿截稿日期

  • 12月20日 2014

    提前注册日期

  • 12月31日 2014

    终稿截稿日期

  • 02月23日 2015

    注册截止日期

  • 04月20日 2015

    摘要截稿日期

联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询