203 / 1971-01-01 00:00:00
A Low Complexity Quantization Scheme Based On Classified Multi-objective Prediction
5509
终稿
刘 江 / Xi’an Satellite Control Center
俊强 李 / Xi′an Satellite Control Center
刘 江 / Xi’an Satellite Control Center
俊强 李 / Xi′an Satellite Control Center
Wavelet decomposition in Image coding allows for efficient coding matched to the statistics of each frequency subband and to the characteristics of the human visual system. Vector quantization (VQ) provides many attractive features for image coding with high compression ratios. However, high computational complexity becomes the drawback of image coding with VQ. To address this problem, in this paper, we have proposed a novel vector quantization algorithm based on classified multi-objective prediction (CMOP). In CMOP, the codebook is generated adaptively according the similarity of coefficient block in the same frequency subband. It overcomes the computational complexity bottleneck of other vector training with codebook. The experimental results revealed that the proposed algorithm produced a high compression ratio with minimum loss. To achieve the best performance of image coding, we proposed the optimal wavelet basis for CMOP quantization algorithm.
重要日期
  • 会议日期

    01月22日

    2015

    02月23日

    2015

  • 12月20日 2014

    初稿截稿日期

  • 12月20日 2014

    提前注册日期

  • 12月31日 2014

    终稿截稿日期

  • 02月23日 2015

    注册截止日期

  • 04月20日 2015

    摘要截稿日期

联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询