194 / 2014-11-16 23:34:58
Wood Defect Detection Uising Image Block Percentile Color Histogram And Eigenvector Texture Feature
wood defect detection,singular value decomposition; image processing
全文录用
To automatic detect wood surface defects, a method based on image block percentile color histogram and eigenvector texture feature classification is proposed. Firstly, a wood surface image is divided into several same size image blocks. Then,for each image block, a percentile color histogram is calculated as image block color feature. Meanwhile, Singular Value Decomposition (SVD) is adopted to extract k max eigenvectors as image block texture feature. And the percentile color histogram and eigenvector texture feature is combined to a feature vector for image block representation. Finally, a support vector machine (SVM) classifier is trained and used to determine which image block is sound or defect wood. The experimental results show that the proposed method can effectively detect wood surface defects, especially the knob type defects.
重要日期
  • 会议日期

    01月22日

    2015

    02月23日

    2015

  • 12月20日 2014

    初稿截稿日期

  • 12月20日 2014

    提前注册日期

  • 12月31日 2014

    终稿截稿日期

  • 02月23日 2015

    注册截止日期

  • 04月20日 2015

    摘要截稿日期

联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询