168 / 1971-01-01 00:00:00
Gaussian Mixture Probability Hypothesis Density Filter For Tracking Visual Targets
probability hypothesis density,feature measurement,visual tracking
全文被拒
xiaofeng lu /
xiaofeng lu / Xi’an University of Technology
晓锋 鲁 / 西安理工大学
/
jing xin / Xi’an University of Technology
xinhong hei / Xi’an University of Technology
lei wang / Xi’an University of Technology
xinhong hei / Xi’an University of Technology
jing xin / Xi’an University of Technology
xiaofeng lu / Xi’an University of Technology
The probability hypothesis density (PHD) filter is a practical alternative to the optimal Bayesian multiple targets filter based on random finite sets (RFS). It propagates the posterior intensity of the random sets of targets. In this paper, we apply the Gaussian Mixture (GM) PHD filter to track a random number of moving targets in visual sequences. To obtain the PHD of visual objects, we propose a method to approximate the posterior intensity using the feature measurement. Monte Carlo technology is adopted to obtain the feature measurement random set by sample particles with the integer label. And we adopt an adaptive weight to fuse the color and edge features to improve the represent ability of tracking targets. The experimental results have demonstrated the effectiveness of our method.
重要日期
  • 会议日期

    11月17日

    2014

    11月19日

    2014

  • 10月10日 2014

    初稿截稿日期

  • 10月31日 2014

    终稿截稿日期

  • 11月19日 2014

    注册截止日期

主办单位
IEEE
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询