1 / 2025-07-02 19:25:02
可转动板式橡胶支座连续梁桥减震体系及其在主余震序列作用下的抗震性能研究(Seismic performance of continous bridges equipped with rotatable laminated rubber bearings subjected to mainshock-aftershock sequences)
可转动橡胶支座;连续梁桥;主余震序列;抗震性能
摘要待审
项乃亮 / 合肥工业大学
王鉴 / 合肥工业大学
Continuous bridges are often equipped with bonded laminated rubber bearings (B-LRBs) to accommodate the thermal movements of bridge superstructure. In addition to the shear and compression stresses typically experienced by B-LRBs, support rotations can introduce pure bending stresses, which pose a significant threat to the behavior of bearings. This study proposes a rotatable B-LRB configuration aimed at mitigating the adverse effects of support rotations. The longitudinal seismic responses of a two-span continuous bridge, equipped with conventional and rotatable B-LRBs, were analyzed and compared under mainshock-only and mainshock-aftershock earthquake scenarios. The results highlight the substantial impact of support rotations on bearing forces, with rotation-induced bending moments accounting for 40%–80 % of the total bending moment in conventional B-LRBs. This effect significantly increases the risk of bearing failure, which, however, can be effectively eliminated with the rotatable B-LRBs. The effectiveness of the rotatable bearings is particularly evident during mainshock-aftershock sequences. Premature failure of conventional B-LRBs during mainshocks exacerbates bridge damage in the subsequent aftershocks, leading to catastrophic consequences such as span unseating, which contradicts the seismic design strategy of ductile bridge piers. In contrast, the rotatable B-LRBs can prevent the failures associated with the bearings, contributing to a more predictable bridge seismic response.
重要日期
  • 会议日期

    08月15日

    2025

    08月17日

    2025

  • 08月08日 2025

    初稿截稿日期

  • 08月08日 2025

    报告提交截止日期

主办单位
兰州交通大学
同济大学
承办单位
兰州交通大学土木工程学院
中国建筑第六工程局有限公司
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询