96 / 2025-04-15 17:03:41
Model for Natural Gas Pipeline Leak Detection Based on Temporal Convolutional Network
Natural gas pipeline leak detection, dilated gated convolution, self-attention mechanism Introduction
全文待审
海清 刘 / 四川轻化工大学
兆飞 李 / 四川轻化工大学
世淋 罗 / 四川轻化工大学
朝斌 唐 / 四川轻化工大学
Abstract—Due to the high noise interference in leak signals and the strong similarity in signal patterns of different types of leaks, traditional methods struggle to accurately identify and classify leaks. To address this, this paper proposes a deep learning model based on Temporal Convolutional Network (TCN) for natural gas pipeline leak detection. The model integrates dilated gated convolutions and a self-attention mechanism to effectively capture the temporal features and key leak information from pipeline sensor data. The core of the model is the dilated gated convolution, which is used to extract temporal features, while the self-attention mechanism dynamically adjusts the feature weights. Each convolutional layer expands the receptive field through the dilation factor, allowing the model to capture long-range temporal dependencies. This structure enables the model to capture local features while also handling dependencies between distant time steps. Experimental results show that the method achieves an accuracy of 93.05% on the public GPLA-12 dataset across 24 leak categories, effectively distinguishing between normal and leak states, and providing a reliable solution for pipeline safety monitoring.

 
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询