94 / 2025-04-14 21:22:27
Advanced Thermal Runaway Prediction and Fault Diagnosis in Lithium-Ion Batteries via Integrated Model and Data-Driven Frameworks
Lithium-ion battery, thermal runaway, data-driven model, high-temperature shock
全文待审
深 赵 / 河北工业大学
欣宇 魏 / 河北工业大学
支桐 官 / 河北工业大学
晓宇 李 / 河北工业大学
君 田 / 中国北方车辆研究所
Thermal runaway (TR) in lithium-ion batteries under extreme high-temperature shock poses significant safety risks in energy storage systems. This study presents a hybrid framework integrating experimental validation with multiphysics modeling and deep learning to predict TR temperatures and enable fault diagnosis. A three-dimensional conjugate heat transfer-TR coupling model is developed, validated through flame shock experiments on NCM523 batteries, achieving a mean absolute percentage error (MAPE) below 7.3%. Key temperature characteristics-onset temperature of self-heating (T1), TR triggering temperature (T2), peak surface temperature (T3), and ignition time (t1)-are extracted to establish fundamental indicators for fault diagnosis. To address data scarcity under extreme conditions, virtual datasets generated by the model are combined with experimental measurements to train a CNN-BiLSTM-ATTENTION network, achieving temperature predictions with relative errors within 5%. The results highlight the critical role of state of charge (SOC), where higher SOC reduces TR onset temperatures and significantly increases heat release rates (HRR). This framework bridges high-fidelity simulations with real-time monitoring, providing a cost-effective solution for early TR warning and safety management in practical applications.

 
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询