83 / 2025-04-07 00:23:53
Sequential Processing-Based Deep State Space Model for Soft Sensing of Thermal Power Plant Generation Output
power generation prediction,soft sensor,sequential filtering,deep state space model
全文待审
硕 李 / 重庆大学自动化学院
毅 柴 / 重庆大学
小龙 陈 / Chongqing University
This paper proposes a Deep State Space Model with Sequential Processing (Seq-Dssm) for predicting the generation output of thermal power plants. Compared to conventional deep state-space models, the proposed method avoids matrix inversion operations through sequential processing, thereby improving computational efficiency and numerical stability. Experimental validation using actual operational data from a thermal power plant demonstrates that the proposed model achieves significant improvements in prediction accuracy over traditional methods. Additionally, by providing uncertainty estimates for predictions, it offers more reliable references for plant operations. The results confirm that the method maintains high prediction accuracy while substantially enhancing computational efficiency, indicating strong potential for engineering applications.
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询