8 / 2025-03-11 23:05:47
Fault warning model of wind turbine pitch system
wind turbine; complicated weather; SCADA data; Fault warning; CPO algorithm
全文待审
凯 孙 / 新疆大学电气工程学院
丙朋 高 / 新疆大学智能科学与技术学院
鑫 蔡 / 新疆大学智能科学与技术学院
华彬 韩 / 新疆大学电气工程学院
Aiming at the issue of difficulty in effectively warning of faults in the pitch system of wind turbines, which affects the operational efficiency and reliability of wind power equipment under complex weather conditions, this study proposes a fault warning model combining Bidirectional Gated Recurrent Unit (BiGRU) and multi-head attention mechanism. By extracting key feature variables and utilizing BiGRU to learn the characteristics of SCADA data from wind turbines, the proposed model’s ability to capture feature information is enhanced. Additionally, the introduction of Cycle Network (CycleNet) and Crown Porcupine Optimization (CPO) algorithm optimizes the model’s prediction capabilities. The research results indicate that this model can effectively improve the accuracy of fault prediction in wind turbines, achieve fault warning, reduce downtime, and lower maintenance costs.
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询