78 / 2025-04-02 12:29:25
MPA-YOLO:Insulator Defect Detection Based on Improved YOLOV11 Algorithm
defect detection, yolov11, PFM, ACGLU
全文录用
Yapei Guo / Xinjiang University
Xinkai Li / Xinjiang University
Yue Meng / Xinjiang University
Hongli Zhang / Xinjiang University
This paper addresses the challenges of complex environmental interference and small target recognition in power system insulator defect detection by proposing an enhanced YOLOv11-based algorithm. We implement three novel mod ules: the Multi-Resolution Edge Feature Integration module (MREFI), the PoolingFormer module (PFM), and the Adaptive Convolutional Gated Linear Unit attention mechanism (ACGLU). The MREFI module strengthens defect boundary recognition by extracting and fusing edge features across multiple spatial scales. The PFM module replaces conventional self-attention mechanisms with efficient pooling operations, substantially re ducing computational complexity while preserving global infor mation interaction capabilities. The ACGLU module enhances feature representation by integrating convolutional operations with gating mechanisms. Experimental results demonstrate that our improved algorithm significantly outperforms the original YOLOv11modelindetection accuracy, with mAP@0.5 increasing by 3.3 percentage points and mAP@0.5-0.95 by 5.1 percentage points. Simultaneously, the model achieves reduced computa tional complexity and parameter count, making it more suitable for practical deployment in power system inspection applications.
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询