77 / 2025-04-01 16:35:47
Rolling Bearing Fault Diagnosis Based on OCSSA-VMD-CNN-GRU
rolling bearing, fault diagnosis, variational modal decomposition, convolutional neural network, gated recurrent unit
全文待审
邦成 张 / 长春工业大学;长春工程学院
博文 胡 / 长春工程学院
波 李 / 长春工程学院
婧媛 宋 / 长春工程学院
云高 殷 / 长春工程学院
智 高 / 长春工业大学
AbstractTo address the challenge of identifying early rolling bearing faults under complex operating conditions, this paper proposes a hybrid VMD-CNN-GRU model optimized using the Osprey-Cauchy-Sparrow search algorithm (OCSSA). First, we design the OCSSA algorithm by integrating the global optimization capability of the Ospreys Search with the local perturbation mechanism of Cauchy mutation, enabling adaptive optimization of both the penalty factor and mode number in variational mode decomposition (VMD). This effectively mitigates modal aliasing issues. Subsequently, an end-to-end deep diagnostic framework is constructed to extract the time-frequency fusion features of the decomposed signals using CNNs and introduce gated recurrent units (GRUs) to model long-term dependencies in the sequences, thereby improving the recognition of weak fault features. Experimental validation on the Case Western Reserve University (CWRU) bearing dataset demonstrates the superiority of the proposed model over benchmark methods (e.g., VMD-CNN-LSTM, VMD-CNN-GRU,and OCSSA-VMD-CNN-BiLSTM),achieving 99.67% fault recognition accuracy and 3.92-second diagnostic latency, which highlights its strong generalization capability and engineering applicability.

 
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询