71 / 2025-03-30 20:34:49
Tool Wear Prediction Using an Ensemble Hybrid Model Based on LSTM and Transformer
tool wear prediction,complex and noisy data,LSTM and Transformer,ensemble learning,PHM2010
全文待审
Wenbin Pan / Nanjing Tech University
Cunsong Wang / Nanjing Tech University
Quanling Zhang / Nanjing Tech University
Dengfeng Zhang / Nanjing Tech University
Tool wear prediction is crucial in manufacturing, as tool degradation affects production efficiency, product quality, and operational costs. Traditional methods, relying on empirical or physics-based analyses, often fail to address complex non-linearities and varying operational conditions. A hybrid model using Long Short-Term Memory (LSTM) networks and Transformer Encoder is proposed for tool wear prediction. LSTM captures temporal dependencies, while Transformer enhances global feature extraction through multi-head attention. Additionally, an ensemble learning approach is integrated to reduce noise and improve robustness. The ensemble LSTM-Transformer encoder (ELSTM-TE) model is validated using the PHM2010 dataset, showing significant improvements in prediction accuracy over traditional and other deep learning models.  The results demonstrate the model’s ability to handle complex, noisy data, offering a reliable solution for tool wear prediction.
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询