70 / 2025-03-30 18:34:59
Fault Estimation for a Class of Nonlinear Systems Using a New Neural Network Based Reinforcement Learning Scheme
fault estimation,neural network,reinforcement learning,nonlinearity
全文录用
政权 陈 / 河南大学
元辉 霍 / 河南大学
加元 晏 / 河南大学
彦东 侯 / 河南大学
艳坤 韩 / 中移在线服务有限公司
In this paper, we presents a novel Neural Network (NN) based Reinforcement Learning (RL) strategy for accurately estimating the faults in nonlinear systems. More specifically, this NN-RL fault estimation strategy takes advantage of the remarkable generalization and function approximation capabilities of the NN and exceptional optimal decision-making and strong learning capabilities of the RL method. The NN-RL performances are comprehensively evaluated by applying them to fault estimation problems in nonlinear manipulator systems. In addition, a comparative analysis of the NN-RL approach is also made to a pure RL fault estimation strategy. Performance comparison on the fault estimation problems of manipulator indicate that the NN-RL method results in better fault estimation as evidenced by high accuracy and overshoot rejection.
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询