55 / 2025-03-29 20:40:23
Spacecraft Fault Diagnosis based on Coupled Feature Extraction from High-Dimensional Data
spacecraft,high-dimensional data,coupled features,generalization,fault diagnosis
全文待审
寒玉 梁 / 北京控制工程研究所
成瑞 刘 / 北京控制工程研究所
文静 刘 / 北京控制工程研究所
文博 李 / 北京控制工程研究所
晓宇 邢 / 北京控制工程研究所
妍 张 / 北京控制工程研究所
In recent years, with the rapid development trend of satellite constellations in the field of space, in order to ensure the safe, reliable and stable operation of constellations, each on-orbit spacecraft is required to have intelligent autonomous fault diagnosis capability to reduce the pressure of ground measurement and control. Considering the characteristics of different types of spacecraft system configurations, closed-loop propagation of spacecraft control system faults, and high-dimensional coupling of the whole satellite system data, this paper proposes a generalized fault diagnosis method based on the autonomous extraction of high-dimensional data coupling features, which adopts a Stacked Autoencoder to intelligently extract the fixed-format generalized two-dimensional fault pattern, and then combines with a deep convolutional neural network to realize high-precision fault diagnosis and localization. Combined with the ground test data of spacecraft attitude and orbit control system with arbitrary configuration, the effectiveness of the proposed method is verified by comparing with various intelligent diagnosis algorithms.
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询