50 / 2025-03-29 16:25:45
Loop Closure Detection Based on Spatial Constraints and Weighted Feature Matching
Loop closure detection,spatial constraints,weighted feature matching,semantic segmentation,dynamic interference suppression,complex industrial environment
全文录用
亮 翟 / 国网宁夏电力有限公司石嘴山供电公司 (Shizuishan Power Supply Company of State Grid Ningxia Power Co.)
This paper presents a novel loop closure detection method based on spatial constraints and weighted feature matching, designed to address the challenges of complex industrial environments such as substations. The proposed approach combines deep learning feature extraction, image region partitioning with spatial position constraints, and dynamic weighting strategies to enhance robustness and accuracy. By dividing images into blocks to restrict feature matching scope, integrating semantic gray maps to eliminate dynamic interference, and dynamically adjusting regional weights to suppress repetitive texture effects, the method significantly improves loop closure detection performance in scenarios with weak textures, repetitive structures, and dynamic objects. Extensive experiments on public datasets and real substation environments validate the effectiveness of the proposed algorithm.
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询