42 / 2025-03-28 17:50:24
Lightweight Multi-Scale Feature Extraction Network for Efficient Driver Gaze Tracking
Driver gaze estimation,lightweight network,attention mechanism,multiscale feature extraction
全文待审
鹏华 李 / 重庆邮电大学
junhao jiang / Chongqing University of Posts and Telecommunications
洋铭 张 / 系统总体研究所
杰 侯 / 重庆邮电大学
Sheng Xiang / Chongqing University of Posts and Telecommunications
晶晶 周 / 中国汽车工程研究院股份有限公司
We present a lightweight multiscale feature extraction network designed for efficient and real-time driver gaze estimation in resource-constrained environments, such as in-vehicle systems. The proposed architecture integrates three key components: a residual backbone built with depthwise separable convolutions for multiscale feature extraction, a hybrid local-global attention mechanism to capture both spatial detail and contextual dependencies, and a dynamic feature fusion module that adaptively reweights features based on contextual relevance. Extensive experiments on the Gaze360 and IVGaze datasets demonstrate that our model achieves competitive accuracy with significantly fewer parameters and lower computational cost compared to existing high-performance methods. These results highlight the model’s suitability for real-world deployment in intelligent transportation and driver monitoring systems.
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询