4 / 2025-03-07 18:37:18
Multi-objective Optimization Strategy for the Working Parameters of Chain-tooth Type Residual Film Recycling Machine
Residual Film Recycling, Neural Network, Genetic Algorithm, Multi-objective Optimization
全文待审
Penghao Wang / School of Electrical Engineering Xinjiang University
Lirong Xie / School of Electrical Engineering Xinjiang University
Yifan Bian / School of Electrical Engineering Xinjiang University
Zhikang Lin / School of Electrical Engineering Xinjiang University
Long Zhou / School of Electrical Engineering Xinjiang University
Minglei Shi / Xinjiang Bazhou Huifeng Plastics Industry Co., Ltd.
This study integrates neural networks and genetic algorithms to optimize a chain-tooth residual film recovery machine. Three operational parameters—pickup device angular velocity, separation device angular velocity, and separation angle—were optimized using EDEM-based discrete element simulations and a backpropagation NN model. The non-dominated sorting genetic algorithm (NSGA-II) generated Pareto-optimal solutions, achieving an impurity content rate (ICR) of 24.26% and film recovery rate (FRR) of 83.67%. Strategic parameter selection from the Pareto front balances ICR reduction and FRR retention, enhancing agricultural film recycling efficiency.

 
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询