28 / 2025-03-26 10:10:02
Improved RT-DETR Model for Automated ROI Localization in Railway Locomotive Sanding Device Monitoring
Locomotive Sanding Device Detection, RT-DETR, MobileNetV4, Feature Enhancement, Wheel-Rail Adhesion Coefficient
全文待审
建均 李 / 重庆交通大学
晋 谭 / 重庆交通大学
钟彬 赵 / 重庆交通大学
雨婷 胡 / 重庆交通大学
雨佳 付 / 重庆交通大学
During the process of braking the locomotive to a halt for maintenance, the sanding device effectively enhances braking efficiency by improving the wheel-rail adhesion coefficient, ensuring maintenance efficiency while improving operational safety. Accurate detection of the locomotive sanding device is critical for monitoring its sanding state. Aiming at the challenges of model redundancy and insufficient feature extraction in existing detection methods under resource-constrained scenarios, this paper proposes an improved RT-DETR (Real-Time Detection Transformer)-based detection method for locomotive sanding devices. The method replaces the original ResNet-18 with MobileNetV4 as the backbone network, significantly reducing model parameters while maintaining performance. Additionally, a Local Feature Extraction (LFE) module is introduced to optimize the RepC3 (Reparameterized Convolution Block 3) module, enhancing the network’s representational capability for fine-grained features of the sanding device. Experimental results demonstrate that the improved RT-DETR model achieves a 1.9% increase in mean average precision (mAP50) while reducing model parameters by 43.7% and computational complexity (GFLOPs) by 32.3%, providing an industrial-grade solution for intelligent operation and maintenance in rail transit.
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询