Melting Dynamis of shocked Diamond: Effects of Crystalline Orientation and Amorphous Structure in ICF Applications
编号:84 访问权限:仅限参会人 更新:2025-04-03 14:22:18 浏览:3次 特邀报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
The behavior of diamond under extreme pressure conditions is crucial for the advancement of inertial confinement fusion (ICF) and high-energy-density physics. While synthetic nanocrystalline diamond, or high-density carbon (HDC), has played a key role in achieving ICF ignition [1,2], significant uncertainties remain regarding the impact of crystalline orientation and amorphous structures on shock Hugoniot behavior and melting dynamics. This study aims to clarify the orientation-dependent equation of state (EoS) of single-crystal diamond and compare it to the shock properties of amorphous diamond.
Our research involves experiments conducted on <110> oriented single-crystal diamond and amorphous diamond with a density of approximately 3.2 g/cc. Using decaying shock techniques [3], we trace the complete pressure-temperature (P-T) Hugoniot trajectory. By analyzing the temperature evolution and phase boundaries of different orientations and amorphous structures, we explore the melting landscape and structural stability under dynamic compression. The experiments, performed at the SG III P laser facility, utilize indirect-driven shocks with a planar hohlraum drive and ultrafast VISAR-SOP diagnostics. These results aim to clarify how crystalline anisotropy and amorphous structure affect shock-induced melting, offering essential benchmarks for molecular dynamics models and enhancing the performance of HDC ablators in ICF applications [4,5].
This work significantly advances the understanding of diamond's high-pressure phase diagram, addressing discrepancies observed between nanocrystalline and single-crystal behaviors. By correlating orientation-dependent shock physics with ablator performance, the findings aim to guide the design of next-generation ICF capsules and the synthesis of metastable materials.
[1] A. B. Zylstra et al., Phys. Rev. Lett. 126 , 025001 (2021).
[2] D. D.-M. Ho et al., J. Phys.: Conf. Ser. 717 , 012023 (2016).
[3] Liang Sun and T. Sekine, Proc. ICMRE 2023 (2023).
[4] Peng Wang et al., Matter Radiat. Extremes 6 , 035902 (2021).
[5] K. Jakubowska et al., High Power Laser Sci. Eng. 9 , e3 (2021).
 
关键词
laser shock compression,ICF,Molecular dynamics; melting temperature; free energy,ablator
报告人
SunLiang
Assistant professer Laser Fusion Research Center; CAEP

稿件作者
SunLiang Laser Fusion Research Center; CAEP
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月12日

    2025

    05月15日

    2025

  • 03月26日 2025

    初稿截稿日期

  • 04月30日 2025

    提前注册日期

  • 05月15日 2025

    注册截止日期

主办单位
北京应用物理与计算数学研究所
陕西师范大学
承办单位
陕西师范大学
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询