Multivariable Control of Wastewater Treatment Process Based on Multi-agent Deep Reinforcement Learning
编号:696 访问权限:仅限参会人 更新:2025-04-02 10:57:37 浏览:6次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要

In this talk, we will discuss the multivariable control of wastewater treatment process(WWTP) based on multi-agent deep reinforcement learning. The urban wastewater treatment process involves numerous chemical reactions, resulting in strong nonlinearity and uncertainty characteristics. Additionally, due to the interdependencies among these biochemical reaction processes, coupling effects exist between different process variables. To address these challenges, we propose a multivariable adaptive PID control strategy based on multi-agent DRL (MADRL) for WWTP. The approach begins with the construction of a MADRL-PID controller structure, consisting of an agent and a PID controller module. The agent adjusts the PID controller values while the PID module calculates the control signal. To enhance the agent's ability to cooperatively tune multiple PID controllers, the algorithm's components—reward function, action space, environment, and state space—are designed according to the BSM1 simulation platform principles and the MADRL framework requirements. Additionally, to handle WWTP's non-linearities, uncertainties, and parameter coupling, the multi-agent deep deterministic policy gradient (MADDPG) algorithm is selected as the foundation for training the agents. Experimental results demonstrate that the proposed algorithm exhibits greater adaptability than traditional PID control and achieves superior control performance.
 
关键词
Wastewater treatment process (WWTP),Deep reinforcement learning (DRL),Multivariable control
报告人
孙瑞
学生 北京工业大学

稿件作者
孙瑞 北京工业大学
杜胜利 北京工业大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    04月17日

    2025

    04月20日

    2025

  • 04月03日 2025

    初稿截稿日期

  • 04月20日 2025

    注册截止日期

主办单位
中国科学院大气物理研究所
承办单位
中国科学院大气物理研究所
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询