Sea Ice Edge Constraint Improves Antarctic Sea Ice Seasonal Prediction in Deep Learning Model
编号:670 访问权限:仅限参会人 更新:2025-04-01 17:31:37 浏览:6次 口头报告

报告开始:2025年04月19日 15:00(Asia/Shanghai)

报告时间:10min

所在会场:[S1-3] 专题1.3 人工智能在大气海洋中的应用 [S1-3] 专题1.3 人工智能在大气海洋中的应用

暂无文件

摘要
Predicting Antarctic sea ice is of substantially academic and practical significance. However, current prediction models including deep learning (DL)-based models show notable bias in the marginal ice zone (MIZ). In this study we developed a pure data-driven DL model for predicting Antarctic austral summer monthly to seasonal sea ice concentration (SIC) by incorporating a novel hybrid sea ice edge constraint loss function (HybridLoss). The model is referred to as ASICNet. Independent test based on the recent five years (2019–2023) demonstrates that ASICNet with HybridLoss achieves significantly higher skills than two other DL-based models without HybridLoss, also higher than the dynamical and statistical models. Furthermore, this study developed enhanced heat maps to interpret the predictability sources of sea ice within DL-based models, and the results suggest that the Antarctic sea ice predictability are attributed to the factors like Antarctic Dipole (ADP), Amundsen Sea Low (ASL), and Southern Ocean sea surface temperature (SST) as revealed in previous predictability studies. Thus, ASICNet is an efficient tool for austral summer Antarctic SIC prediction.
关键词
deep learning,sea ice prediction,Southern Ocean Marginal Ice Zone,heat map
报告人
韩哲
副研究员 中国科学院大气物理研究所

稿件作者
韩哲 中国科学院大气物理研究所
王慧 中国地质大学(武汉)
李双林 中国科学院大气物理研究所
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    04月17日

    2025

    04月20日

    2025

  • 04月03日 2025

    初稿截稿日期

  • 04月20日 2025

    注册截止日期

主办单位
中国科学院大气物理研究所
承办单位
中国科学院大气物理研究所
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询