HOPE: An Automatically Differentiable High-Order Non-Oscillatory Finite-Volume Shallow-Water Dynamic Core
编号:653 访问权限:仅限参会人 更新:2025-04-01 16:59:30 浏览:6次 口头报告

报告开始:2025年04月18日 14:40(Asia/Shanghai)

报告时间:10min

所在会场:[S1-1] 专题1.1 模式数值算法研究 [S1-1] 专题1.1 模式数值算法研究

暂无文件

摘要
An automatically differentiable, high-order non-oscillatory finite volume shallow water dynamic core has been constructed on a cubed sphere grid. This dynamic core has four advantageous properties: high order accuracy, essential non-oscillation, mass conservation, and scalability. Besides, the code development is based on PyTorch, enabling the model to run seamlessly on both CPU and GPU, while naturally possessing the capability of automatic differentiation. We named the new dynamic core as High Order Prediction Environment (HOPE). The spatial reconstruction is based on the two-dimensional tensor product polynomial (TPP) and the genuine two-dimensional Weighted Essentially Non-Oscillatory scheme. A novel panel boundary approach ensures that the accuracy can reach arbitrary order. These algorithms have very high degree of compatibility with GPU architecture, allowing the computational overhead to be mitigated through the utilization of GPU. The Low Mach number Approximate Riemann Solver scheme is adopted as Riemann solvers to determine fluxes on the Gaussian points on edges. Flux across the interface between each cell edge is computed using Gaussian quadrature, and the tendencies of prognostic variables are obtained by integration all the source terms and the fluxes across the cell boundaries. This shallow water dynamic core exhibits outstanding performance in ideal shallow water test cases. In the steady-state geostrophic flow, the 11th order scheme reduces errors to nearly double precision round-off error even on coarse grids. Furthermore, HOPE maintains the Rossby-Haurwitz wave over 100 days without collapse. To test the non-oscillation property, we designed a cylinder dam break case, the WENO approach effectively suppresses non-physical oscillation, and the genuine two-dimensional reconstruction exhibits significantly better isotropy than the dimension-by-dimension scheme.
关键词
自动微分,高精度,动力框架,有限体积法,浅水波方程,无振荡格式
报告人
周立隆
高级工程师 中国气象局地球系统数值预报中心

稿件作者
周立隆 中国气象局地球系统数值预报中心
薛巍 清华大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    04月17日

    2025

    04月20日

    2025

  • 04月03日 2025

    初稿截稿日期

  • 04月20日 2025

    注册截止日期

主办单位
中国科学院大气物理研究所
承办单位
中国科学院大气物理研究所
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询