LMARSpy: A GPU-Ready Nonhydrostatic Dynamical Core with a Sharpness-Preserving Monotonicity Limiter and a Conservative Vertical Implicit Solver
编号:647 访问权限:仅限参会人 更新:2025-04-01 16:57:38 浏览:6次 口头报告

报告开始:2025年04月18日 16:40(Asia/Shanghai)

报告时间:10min

所在会场:[S1-1] 专题1.1 模式数值算法研究 [S1-1] 专题1.1 模式数值算法研究

暂无文件

摘要
Global numerical modeling is advancing into the era of kilometer-scale, non-hydrostatic simulations with integrated AI capabilities, while heterogeneous computing emerges as a pivotal trend in high-performance computing (HPC). As a strong candidate for next-generation global kilometer-scale general circulation models (GCMs), the A-grid dynamical core based on the Low Mach number Approximate Riemann Solver (LMARS) must address key challenges: ensuring monotonicity while preserving sharp gradients, mitigating CFL constraints caused by vertically propagating sound waves, and integrating AI-driven computational power. This work presents LMARSpy, a GPU-optimized non-hydrostatic dynamical core with a sharpness-preserving monotonicity limiter and a conservative vertical implicit solver. Designed for GPU efficiency, LMARSpy leverages a Python-based high-performance computing platform to ensure robust compatibility across heterogeneous computing environments. Benchmark tests validate the model‘s innovations: the monotonicity limiter effectively suppresses non-physical oscillations while maintaining high-order accuracy, incurring only a 10.4% increase in GPU computational cost; the vertical implicit solver alleviates CFL limitations, achieving at least an order-of-magnitude improvement in efficiency when horizontal grid spacing significantly exceeds vertical spacing; and the Python-based HPC platform enables seamless operation on both CPU and GPU architectures, with a single GPU delivering performance equivalent to clusters exceeding 325 standard CPU cores. Furthermore, the PyTorch backend provides inherent compatibility with machine learning, positioning LMARSpy as a cutting-edge tool to propel global numerical modeling into the AI era.
关键词
Dynamical Core,LMARS,Monotonicity Limiter,Vertical Implicit Solver,GPU
报告人
张伟康
研究生 中国科学院大气物理研究所

稿件作者
张伟康 中国科学院大气物理研究所
陈曦 中国科学院大气物理研究所
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    04月17日

    2025

    04月20日

    2025

  • 04月03日 2025

    初稿截稿日期

  • 04月20日 2025

    注册截止日期

主办单位
中国科学院大气物理研究所
承办单位
中国科学院大气物理研究所
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询