Precipitation forecast based on multi-scale STGNN
编号:642 访问权限:仅限参会人 更新:2025-04-03 11:31:59 浏览:9次 口头报告

报告开始:2025年04月19日 16:20(Asia/Shanghai)

报告时间:10min

所在会场:[S1-3] 专题1.3 人工智能在大气海洋中的应用 [S1-3] 专题1.3 人工智能在大气海洋中的应用

暂无文件

摘要
Accurate monthly precipitation forecasting holds significant importance for agriculture, meteorological prediction, and environmental protection. While traditional models like Vector Autoregression (VAR) have been widely applied in river flow prediction, their limitations in addressing spatial attributes of meteorological data remain notable. To address this gap, this study proposes a novel ”decomposition-reconstruction-prediction-integration” framework based on Spatio-Temporal Graph Neural Networks (STGNN), which inherently excels in processing multi-site data. First, the Time-Varying Filter-based Empirical Mode Decomposition (TVF-EMD) is employed to decompose raw precipitation sequences into multiple components. Subsequently, frequency dispersion metrics evaluate sequence volatility, with components exceeding the entropy threshold identified as high-frequency signals. These aggregated high-frequency components undergo secondary decomposition through Variational Mode Decomposition (VMD) to generate refined sub-components. The reconstructed components, formed by integrating these sub-components with residual elements, are then fed into an enhanced STGNN model incorporating temporal attention mechanisms, spatial attention layers, and residual optimization modules. Final precipitation forecasts are obtained by synthesizing predictions from all components. Applied to monthly precipitation data spanning January 1979 to August 2023 across Guangdong Province monitoring stations, this model demonstrates superior reliability and accuracy compared to benchmark methods. The proposed framework effectively captures spatiotemporal dependencies while addressing volatility heterogeneity in precipitation patterns, offering a robust solution for regional hydrological forecasting.
关键词
Precipitation forecast,graph neural network,Series decomposition,Time series
报告人
刘新儒
数学实验教学中心主任 中南大学

稿件作者
刘新儒 中南大学
郑傲林 中南大学
张健 广东省统计局
刘圣军 中南大学
胡娅敏 广东省气候中心
闵靖云 中南大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    04月17日

    2025

    04月20日

    2025

  • 04月10日 2025

    初稿截稿日期

  • 04月20日 2025

    注册截止日期

主办单位
中国科学院大气物理研究所
承办单位
中国科学院大气物理研究所
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询