Utilizing Explainable Artificial Neural Networks to Constrain Future Temperature Changes in China
编号:594 访问权限:仅限参会人 更新:2025-03-31 17:53:37 浏览:2次 口头报告

报告开始:2025年04月19日 12:20(Asia/Shanghai)

报告时间:15min

所在会场:[S1-2] 专题1.2 人工智能在气候研究中的应用 [S1-2] 专题1.2 人工智能在气候研究中的应用

暂无文件

摘要
Accurate temperature projections are critical for climate adaptation and policymaking, yet substantial uncertainties remain in model results, particularly at regional scales. In this study, we develop a deep learning model to predict the timing of temperature thresholds in China based on historical datasets and use observational data to constrain future projections. We demonstrate that historical annual mean temperature can highly predict future temperature changes for China. Using this model, we estimate that the country will reach a 2°C temperature increase before the 2030s. Our explainable model reveals that the Southern Ocean, especially the Southeastern Pacific, is a key driver for these projections. This region exhibits a slow response of sea surface temperature to greenhouse gases, reflecting the pace and signal of global warming. Moreover, green's function perturbation experiments with numerical climate model further indicate this region as an optimal forcing area for East Asian temperature variations via dynamic pathways. Our findings underscore that deep learning models can not only extract the emerging global warming signal from annual mean temperature data but also account for dynamic interactions between regions, allowing historical data to effectively constrain future projections.
关键词
人工智能 气候变化
报告人
解朝阳
学生 中国科学院大气物理研究所

稿件作者
解朝阳 中国科学院大气物理研究所
汪亚 中科院大气所
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    04月17日

    2025

    04月20日

    2025

  • 04月03日 2025

    初稿截稿日期

  • 04月20日 2025

    注册截止日期

主办单位
中国科学院大气物理研究所
承办单位
中国科学院大气物理研究所
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询