Global existence and incompressible limit of weak solutions to compressible primitive equations with density-dependent viscosity
编号:522 访问权限:仅限参会人 更新:2025-03-31 10:21:52 浏览:7次 口头报告

报告开始:2025年04月20日 10:35(Asia/Shanghai)

报告时间:15min

所在会场:[S3-6] 专题3.6 气候环境与数学 [S3-6] 专题3.6 气候环境与数学

暂无文件

摘要
In this talk, we will introduce the global existence and incompressible limit of weak solutions to compressible primitive equations (CPEs) with density-dependent viscosity for large initial data, when physical number gamma equals 1 in the pressure of atmosphere.

The primitive equations (PEs) of atmosphere are the fundamental equations in geophysical fluid dynamics. They are based on the so-called hydrostatic approximation, in which the conservation of momentum in the vertical direction is replaced by the hydrostatic equation. The CPE model can be derived from the 3D compressible and anisotropic Navier–Stokes equations by hydrostatic approximation.

Firstly, we can obtain the global existence of weak solutions to the nondimensional CPE model with degenerate viscosity, which need three steps in the proof. First of all, by using the method of work which is obtained by Wang, Dou and Jiu in 2020 and Faedo-Galerkin method, we firstly obtain the global existence of the approximate solutions to CPE model. Then, we get  the lower bound of the density, which is the key estimates. And we arrive at the Bresch–Desjardins entropy of solutions to the approximate system. Finally, we apply compactness arguments to vanish the parameters in the approximate system that we construct to obtain global existence of weak solutions to nondimensional CPE model. 

Secondly, we can obtain the incompressible limit to CPE model as epsilon  goes to zero (where epsilon means the Mach number), and the primitive equations with the incompressibility condition are identified as the limiting equations. The convergence with well-prepared initial data (that is, initial data has no acoustic oscillations) is rigorously justified. In the proof, it is crucial that we obtain the estimates of the solutions to the compressible primitive equations are uniform about the Mach number. So, we can let epsilon tends to zero and obtain the incompressible limit. And, the density is a function on the vertical variable, rather than a constant in the incompressbile system.
关键词
compressible primitive equations,density-dependent viscosity,weak solution,incompressible limit
报告人
窦昌胜
教授 首都经济贸易大学

稿件作者
窦昌胜 首都经济贸易大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    04月17日

    2025

    04月20日

    2025

  • 04月03日 2025

    初稿截稿日期

  • 04月20日 2025

    注册截止日期

主办单位
中国科学院大气物理研究所
承办单位
中国科学院大气物理研究所
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询