Geostationary Rapid Imaging-Derived Atmospheric Motion Vectors: The Key to Breakthroughs in Super Typhoon Forecast
编号:138 访问权限:仅限参会人 更新:2025-03-26 16:56:25 浏览:12次 口头报告

报告开始:2025年04月19日 11:50(Asia/Shanghai)

报告时间:10min

所在会场:[S1-16] 专题1.16 高影响天气气候事件可预报性及AI算法的应用 [S1-16] 专题1.16 高影响天气气候事件可预报性及AI算法的应用

暂无文件

摘要
Abstract
This study reveals how geostationary satellite-derived minute-scale and mesoscale atmospheric motion vectors (MAMVs) offer a breakthrough in super typhoon forecasts. By leveraging high-frequency, high-resolution imagery, MAMVs provide unprecedented insights into wind patterns and atmospheric flows across multiple tropospheric layers, significantly enhancing the skill of numerical weather prediction models (NWP) in forecasting super typhoons. To evaluate the effectiveness of MAMVs in enhancing typhoon forecasts, this study assimilated MAMVs into NWP models and compared them with assimilating standard atmospheric motion vectors and control experiments without assimilation. Compared to assimilating standard AMVs, the assimilation of MAMVs significantly reduces typhoon track forecast errors by nearly 50% within 48 hours and improves forecasts up to 72 hours in advance. Case studies of recent super typhoons demonstrate the substantial enhancement in forecast accuracy, offering a promising approach to advance tropical cyclone prediction and enhance disaster preparedness, where improved forecasting can save lives and reduce damages.
 
关键词
Typhoon; Geostationary high-speed imager; Mesoscale atmospheric motion vector; Data assimilation.
报告人
夏攀
博士研究生 中山大学大气科学学院

稿件作者
夏攀 中山大学大气科学学院
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    04月17日

    2025

    04月20日

    2025

  • 04月03日 2025

    初稿截稿日期

  • 04月20日 2025

    注册截止日期

主办单位
中国科学院大气物理研究所
承办单位
中国科学院大气物理研究所
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询