Lightweight Multi-Axis Vibration–Current Fusion CNC Process-Segment Recognition Driven by Cross-Modal Knowledge Distillation
编号:67 访问权限:仅限参会人 更新:2025-06-29 13:02:41 浏览:123次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
    Steady-state segmentation in complex cutting is hindered by signal ambiguity and sparse shop-floor instrumentation. We introduce a train-time multimodal / run-time unimodal framework that couples multi-axis vibration with spindle-current data during training yet relies solely on current RMS sequences for inference. A benchmark dataset spanning multiple workpiece materials is first acquired. In the teacher network, self-distillation spatial attention prunes intra-modal redundancy, while vibration-guided cross-attention injects high-frequency cues into the current stream, yielding a compact fused representation. Multi-stage knowledge distillation transfers this representation to a lightweight student model. With only current signals, the student attains 97 % accuracy, outperforming the PCA-SVM and CNN-LSTM baselines by approximately 10 % and 3.5 %, respectively, while markedly reducing parameters and latency. The results confirm that high-precision, real-time CNC process-segment recognition is feasible with a single current sensor, enabling practical shop-floor monitoring.
关键词
CNC process-segment recognition; cross-modal knowledge distillation; attention mechanism; lightweight monitoring
报告人
Haijun Shen
student Kunming University of Science and Technology

稿件作者
Chang Liu Kunming University of Science and Technology
Haijun Shen Kunming University of Science and Technology
Feifei He Kunming University of Science and Technology
Lei Yang Kunming University of Science and Technology
Jiaxin Zhao Kunming University of Science and Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    08月01日

    2025

    08月04日

    2025

  • 07月04日 2025

    初稿截稿日期

主办单位
中国机械工程学会设备智能运维分会
承办单位
新疆大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询