203 / 2025-06-14 09:41:08
Research on Motor Fault Diagnosis Based on Improved Convolutional Neural Network of Random Forest under Small Sample Conditions
small sample,CNN,random forest,fault diagnosis
终稿
Wenjie Liu / National University of Defense Technology
Jiajie Hao / Hunan University
Yi Yang / National University of Defense Technology
Guoji Shen / National University of Defense Technology
In response to the limitations of traditional convolutional neural networks in motor condition monitoring under small sample conditions, this study proposes an improved convolutional neural network model based on random forests(CNN-RF), which utilizes Random Forests to replace the softmax classification layer of the original CNN, thereby integrating Random Forest methods with Convolutional Neural Networks. Utilizing the bearing dataset from Huazhong University of Science and Technology, the research generated image sets under small-sample conditions using continuous wavelet transform. The proposed model demonstrates robust classification performance in data-scarce scenarios, achieving 97.38% accuracy with only 10% of the data.



 
重要日期
  • 会议日期

    08月01日

    2025

    08月04日

    2025

  • 07月04日 2025

    初稿截稿日期

主办单位
中国机械工程学会设备智能运维分会
承办单位
新疆大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询