Research on Optimization Method for PWR-Core Refueling Based on Deep Learning and Bayesian Optimization
编号:77 访问权限:仅限参会人 更新:2024-09-11 16:19:29 浏览:125次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Refueling optimization of pressurized water reactor (PWR) cores is a key aspect of the safe and efficient operation of nuclear power plants. Traditional optimization methods often suffer from low computational efficiency and a tendency to fall into local optima. This paper proposes a refueling optimization method based on a combination of variational autoencoders, deep metric learning, and Bayesian optimization. The method utilizes variational autoencoders to map discrete core layout data into a continuous latent space, and deep metric learning is used to construct a structured latent space where samples with similar core parameters are placed close together. Then, a multi-objective Bayesian optimization method is employed to efficiently search for the optimal solution in the latent space, and the decoder is used to transform the optimal latent variables back into corresponding core layouts. Experimental validation based on M310 first-cycle initial loading data demonstrates that the proposed method can effectively improve refueling optimization efficiency and solution quality, yielding better refueling schemes than traditional methods.
关键词
Refueling optimization; Multi-objective Optimization; Bayesian Optimization; Variational Autoencoder; Deep Metric Learning; NECP-Bamboo
报告人
YuanCheng Zhou
Doctoral student Xi'an JiaoTong University

稿件作者
YuanCheng Zhou Xi'an JiaoTong University
YunZhao Li Xi'an JiaoTong University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    09月23日

    2024

    09月25日

    2024

  • 09月24日 2024

    报告提交截止日期

  • 09月25日 2024

    注册截止日期

主办单位
Harbin Engineering University (HEU)
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询