Intelligent Fault Diagnosis of Electric Gate Valves under Sample Imbalance Based on GAN
编号:75 访问权限:仅限参会人 更新:2024-09-08 17:38:14 浏览:186次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Valves are common devices in nuclear power plants, primarily used for controlling fluid transport. In nuclear power plants, some valves operate in harsh environments with high temperature, high pressure, and high radiation. Prolonged operation in such conditions can lead to performance degradation or loss of certain functions. In order to better detect valve failures in advance, this study focuses on the early fault diagnosis techniques for electric gate valves. An experimental setup was constructed to simulate normal operation, three-phase voltage imbalance, and packing damage in electric gate valves. The XGBoost method is utilized to diagnose the collected fault data, and to address the issue of poor fault diagnosis performance caused by imbalanced data, the Generative Adversarial Network (GAN) method is employed to generate sample data, thereby increasing the number of minority class samples and resolving the sample imbalance problem. Experimental results demonstrated that the proposed method effectively identifies fault states of electric gate valves and provides accurate fault diagnosis predictions under sample imbalance conditions.
关键词
nuclear power plants,electric gate valves,fault diagnosis,XGBoost,GAN
报告人
Longfei Shan
harbin engineering university

稿件作者
Longfei Shan harbin engineering university
Yongkuo Liu Harbin Engineering University
Gao Jiarong Harbin Engineering University
Xin Ai Harbin Engineering University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    09月23日

    2024

    09月25日

    2024

  • 09月24日 2024

    报告提交截止日期

  • 09月25日 2024

    注册截止日期

主办单位
Harbin Engineering University (HEU)
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询