Accelerating Computational Fluid Dynamics Convergence with Local Non-uniform Initialization Using Neural Network Surrogate Computation
编号:70 访问权限:仅限参会人 更新:2024-09-08 17:37:24 浏览:94次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
In computational fluid dynamics (CFD), accelerating calculations is of great significance. During the numerical computation process, for non-uniform initialization, initialization is performed based on boundary and initial conditions and the known internal field distributions, assigning the values of initial pressure, velocity, and other field variables to each grid throughout the computational domain. Machine learning methods can model and characterize more complex field distribution properties based on a priori knowledge of historical data compared to interpolation algorithms. In this study, a neural network is applied to the generation of initial fields data in CFD to explore the applicability of accelerated convergence of the CFD computational process. A complex flow scenario with separated flow was used to validate and evaluate the effectiveness of the proposed method in accelerating computational convergence, using a case of blockage flow within a narrow rectangular channel. The results indicate that the method proposed in this study significantly improves computational efficiency when handling high-dimensional, nonlinear, complex flow calculations.
关键词
Computational fluid dynamics (CFD),Neural network modeling,Numerical computation,Non-Uniform initialization,Machine learning,Computational acceleration
报告人
Biao Liang
哈尔滨工程大学

稿件作者
Biao Liang 哈尔滨工程大学
SICHAO Tan 哈尔滨工程大学
Bo Wang 哈尔滨工程大学
JIangkuan Li 哈尔滨工程大学
Ruifeng Tian 哈尔滨工程大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    09月23日

    2024

    09月25日

    2024

  • 09月24日 2024

    报告提交截止日期

  • 09月25日 2024

    注册截止日期

主办单位
Harbin Engineering University (HEU)
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询