Research on Fault Diagnosis Method for Nuclear Power Plants Rotating Machinery Based on MoCo Siamese Neural Network
编号:44 访问权限:私有 更新:2024-09-16 22:11:17 浏览:134次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

演示文件 附属文件

提示:该报告下的文件权限为私有,您尚未登录,暂时无法查看。

摘要
Rotating machinery is a kind of significant equipment that widely used in nuclear power plants (NPPs). The harsh operating environment and long-term continuous operation of the rotating machinery can cause various faults due to wear, vibration, et al, that threatens the safety of the NPPs. Intelligent fault diagnosis techniques can timely discover the abnormality of the rotating machinery, that received extensively attention in recent years. A fault diagnosis method for NPPs rotating machinery based on MoCo siamese neural network is proposed to address the issues of high noise, small sample, and low accuracy in fault diagnosis under actual operating conditions. The wavelet transform is used to denoise the sensor signals of rotating machinery and extract time-frequency features. The training samples are encoded by the siamese neural network method. The momentum contrast (MoCo) method is used to update the encoder of the siamese neural network. The cosine similarity is used to measure the similarity of sample coding features. The dataset of rotating machinery from Machinery Failure Prevention Technology (MFPT) is adopted to validate the effectiveness and accuracy of the MoCo siamese neural network method. The results shows that the proposed fault diagnosis method has strong noise resistance capability and can accurately diagnose rotating machinery in small sample conditions, demonstrating the potential application value in the fault diagnosis of NPPs rotating machinery.
关键词
Fault Diagnosis;Rotating Machinery;Wavelet Transform;Momentum Contrast;Siamese Neural Network
报告人
Yubo Xia
研究生 南华大学

稿件作者
Yubo Xia 南华大学
Yanan Zhao 南华大学
Tao Yu 南华大学
Pengcheng Zhao 南华大学
Zhengcheng Zhao 南华大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    09月23日

    2024

    09月25日

    2024

  • 09月24日 2024

    报告提交截止日期

  • 09月25日 2024

    注册截止日期

主办单位
Harbin Engineering University (HEU)
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询