FLOW DISTRIBUTION PREDICTION MODEL OF ANNULAR FUEL BASED ON GA-BP NEURAL NETWORK
编号:38 访问权限:仅限参会人 更新:2024-09-05 21:08:14 浏览:81次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Annular fuel has dual coolant channels, which have the potential to increase the reactor power density while improving the safety margin. The coolant flow distribution between the inner and outer channels directly affects the heat transfer efficiency of the fuel channel. Regarding the measurement of flow distribution ratio (outer channel flux to total flux) is challenging, the development of calculation model is essential for acquiring flow distribution characteristics of annular fuel. In this study, a 5×5 annular fuel assembly was modeled based on computational fluid dynamics. The flow distribution ratio and pressure drop ratio were calculated under steady state, pulsating flow and rolling motion conditions, respectively. A flow distribution prediction model is established based on the GA-BP neural network with simulated data. The prediction results are consistent with that of the experiment, with an overall error of 2%.
关键词
GA-BP Neural Network,Flow Distribution,Annular Fuel
报告人
Yu Zou
PhD Candidate Harbin Engineering University

稿件作者
Yu Zou Harbin Engineering University
Shouxu Qiao Harbin Engineering University
Jinyang Li Harbin Engineering University
SICHAO Tan 哈尔滨工程大学
RuiFeng Tian Harbin Engineering University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    09月23日

    2024

    09月25日

    2024

  • 09月24日 2024

    报告提交截止日期

  • 09月25日 2024

    注册截止日期

主办单位
Harbin Engineering University (HEU)
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询