Heat transfer analysis of the lithium film flow on a Tokamak divertor using MD-PINN
编号:27 访问权限:仅限参会人 更新:2024-09-20 20:26:36 浏览:95次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

演示文件 附属文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Accurate solutions to real-time complex nuclear engineering problems require high computational resources. Artificial Intelligence proven effective in various engineering problems is a promising method for analysis of heat transfer problems in nuclear engineering. This research uses a deep learning approach of artificial intelligence to study the heat transfer behavior of the lithium film flow on the plasma-facing side of the Tokamak divertor. A Multi-Domain Physics Informed Neural Network (MD-PINN) model was developed to solve the steady-state convection-diffusion partial differential equation leveraging automatic differentiation to compute the loss function from the residuals of the equation. The model was validated with analytical solutions for two-layer two materials' 1D and 2D heat conduction problems. The model was improved through parametric analysis for convergence rate and accuracy. Steady-state temperature distribution was obtained using the MD-PINN model and compared with the reference results. A good agreement of the results shows the capability of the MD-PINN as an alternative to the numerical simulation.
关键词
Artificial Intelligence,heat transfer,Tokamak divertor,Physics Informed Neural Network,differential equation
报告人
Muhammad ILYAS
Professor PIEAS

稿件作者
Habib ur REHMAN PIEAS
Muhammad ILYAS PIEAS
Abid Hussain PIEAS
Manzoor Ahmed PIEAS
Shahab Ud Din Khan PTPRI
Maaz Irfan Amjad PIEAS
Muhammad Ali Khan PIEAS
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    09月23日

    2024

    09月25日

    2024

  • 09月24日 2024

    报告提交截止日期

  • 09月25日 2024

    注册截止日期

主办单位
Harbin Engineering University (HEU)
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询