Constructing High-Fidelity Flow Field Data for a Pressurized Water Reactor Core Based on the Physics-Informed Neural Networks
编号:12 访问权限:仅限参会人 更新:2024-09-05 09:34:51 浏览:78次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
The thermal-hydraulic characteristics of reactor cores is crucial for ensuring reactor safety analysis. Although Computational Fluid Dynamics (CFD) simulation can provide high-fidelity data for the core flow field, it consumes enormous computational resources. Conversely, solely using the physics-informed neural networks (PINN) is insufficient to fully describe the mathematical and physical equations involved in the complex phenomena within the reactor cores. This paper proposed a method for constructing high-fidelity flow field data for reactor cores: using low-fidelity CFD data to initialize PINN and encoding certain mathematical and physical equations into the PINN. The method is tested using a basic cylinder flow disturbance problem and the obtained velocities and temperatures show significantly improved accuracy compared to the low-fidelity data. Then, the method is applied to construct the core flow field data.
 
关键词
CFD Analysis,Constructing High-Fidelity Flow Field Data,Physics-Informed Neural Networks
报告人
Huifang Zhang
Xi'an Jiaotong University

稿件作者
Huifang Zhang Xi'an Jiaotong University
Yang Liu Xi’an Jiaotong University
Zhuoyi Shang University of Chinese Academy of Sciences
Yapei Zhang Xi’an Jiaotong University
Wenxi Tian Xi’an Jiaotong University
Suizheng Qiu Xi’an Jiaotong University
Guanghui Su Xi’an Jiaotong University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    09月23日

    2024

    09月25日

    2024

  • 09月24日 2024

    报告提交截止日期

  • 09月25日 2024

    注册截止日期

主办单位
Harbin Engineering University (HEU)
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询