Online Anomaly Detection for Multivariate Monitoring Data of Nuclear Power Plants Based on Spatiotemporal Graph Neural Networks
编号:104 访问权限:私有 更新:2024-09-23 22:54:20 浏览:148次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

演示文件

提示:该报告下的文件权限为私有,您尚未登录,暂时无法查看。

摘要
The detection and identification of abnormal transients in nuclear power plants is essential for implementing correct emergency measures and ensuring the safe operation of nuclear power plants. The accuracy of current abnormal transient detection methods in nuclear power plants is susceptible to the influence of the spatiotemporal correlation of operational data, and the subjective setting of abnormal detection thresholds also impacts the detection precision. Therefore, this paper proposes an online detection method for abnormal transient conditions in nuclear power plants based on spatiotemporal graph attention networks. Firstly, taking normal operating condition data as the learning target, a multi-head Graph Attention Network (GAT) is utilized to extract the spatial features of multidimensional time-series data. Secondly, multi-scale temporal convolutions and gating mechanisms are applied to capture temporal features from operational data. After feature fusion, an anomaly detection model is constructed by integrating a prediction model and a reconstruction model. Finally, the dynamic detection threshold based on Peaks-over-threshold (POT) is used to identify the abnormal transient conditions by combining the prediction error and the reconstruction error. In the application of the primary circuit system of nuclear power plant, this method shows higher accuracy than the classical baseline model.
关键词
Nuclear power plant;Abnormal transient detection;Spatiotemporal feature extraction;Prediction and reconstruction
报告人
Jiazeng Zhao
Harbin Engineering University

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    09月23日

    2024

    09月25日

    2024

  • 09月24日 2024

    报告提交截止日期

  • 09月25日 2024

    注册截止日期

主办单位
Harbin Engineering University (HEU)
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询